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Abstract--The surface integral formulation has been used

here for the computation of TM and TE modes propagating in

dielectric loaded waveguides, This formulation makes use of
the surface equivalence principle whereby the field at any point
internal or external to the waveguide can be expressed in terms
of equivalent surface currents. This procednre reduces the
original problem into a set of integro-differential equations

which is then reduced to a matrix equation using method of
moments. The solution of this matrix equation provides the

propagation characteristics of the waveguide and the equiva-
lent surface currents existing on the waveguide walls. The

equivalent surface currents can be used to compute the fields

at all points, both inside and outside the waveguide. The sur-

face integral method has been used to compute the propagation

characteristics of waves propagating in dielectric loaded wave-

guides. The computed results agree very well with analytical
and publisbed data. However, the use of the surface integral
method on dielectric loaded waveguides sometimes leads to the

existence of spurious modes. A method has been illustrated
which can h,e used to remove these spurious modes.

I. AN OVERVIEW

A METI-IOD based on a surface integral formulation

has been used here for the computation of TM, and

TEZ modes propagating in dielectric loaded waveguides.

This formulation is based on the surface equivalence prin-

ciple whereby the structure is modeled by equivalent sur-

face currents that now represent the sources producing

fields in an homogeneous medium. A method of moments

technique has been used to compute the dispersion rela-

tion and the equivalent surface currents using which the

fields at all points in and around the waveguide can be

computed. The waveguide can now be easily modeled

since the waveguide parameters can be calculated from

the fields. The authors believe that the surface integral

formulation used here is a very easy and effective tech-

nique to analyze waveguides having very complex geo-

metries.

The surface integral method has been used in the past

by Swaminathan et al. [1] and Spielman et al. [2] to ana-

lyze hollow waveguides. The method presented in this pa-

per is an extension of [1].

Manuscript received October 1, 1990; revised March 11, 1991.
M. Swaminathan is with International Business Machines Corporation.

East Fishkill, NY 12533.
T. K. Sarkar and A. T. Adams are with the Department of Electrical

Engineering, Syracuse University, Syracuse, NY 13244-1240.
IEEE Log Number 9105250.

A dielectric loaded waveguide is made up of multiple

conductors and dielectrics. Due to the presence of multi-

ple dielectric mediums, no simple relation exists between

the propagation constant and frequency. Hence, unlike a

hollow waveguide [1], [2], the cutoff wavenumber alone

cannot be used to completely characterise the dielectric

loaded waveguide. Three types of modes can propagate

in a waveguide namely, TM, TE and hybrid. This paper

gives a detailed account of the use of the surface integral

method to compute the TM and TE modes propagating in

dielectric loaded waveguides.

H. INTRODUCTION

Consider a dielectric loaded waveguide of arbitrary

cross section existing in free space, as shown in Fig. 1.

The conductor and dielectric are non-touching and the

space between th~em is filled with free space. The conduc-

tor is assumed to be a perfect electric conductor (o -+ co),

thus making the tangential component of the electric field

vanish on its surface. The waveguide is infinite along the

z-direction and has a finite cross-section along the x-y

plane. Since the waveguide is made up of multiple di-

electric mediums, the permeability and permittivity of

each dielectric differs from its surrounding medium.

Consider waves traveling along the z-direction in the

dielectric loaded waveguide shown in Fig. 1. These waves

can be represented by wavefunctions of the form

~~ = h,n(kJ&(kY,.) e ‘jpz m = O, 1 (1)

where +~ are wawefunctions in the mth medium, hm(kx,n)

and hJkyJ are harmonic functions along the x and y di-

rections respectively and kxm, kym are separation parame-

ters given by the separation equation k~m + k~m + @2 =

k:. In (1), 6 is the propagation constant and k., is the

wavenumber in the mth dielectric medium given by km =

, where a is the angular frequency of the wave
propagating in the waveguide and ~n, ~~ are the perme-

ability and permittivity of the mth medium respectively.

The wavefunctions rj~ in (1) completely characterize

the waveguide since these wavefunctions can be used to

find the electric and magnetic fields at all points inside

and outside the waveguide. Due to the presence of mul-

tiple, dielectric regions, there is no simple relation be-

tween the propagation constant (3 and the cut-off wave-

number as was possible with the hollow waveguides [1],

[2] .
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Fig. 1. Dielectric loaded waveguide,

Hence to get a relation between (3 and the wavenumber

in free space ko, it is necessary to satisfy the continuity of

the tangential components of the electric and magnetic

fields at any interface.

A surface integral formulation has been used here to

characterise dielectric loaded waveguides. This formula-

tion makes use of the surface equivalence principle to rep-

resent the waveguide by equivalent currents that produce

the same fields as in the original problem. The problem

is then reduced to an eigenvalue matrix equation and

solved as in [1].

TM, and TEZ modes can propagate in a dielectric loaded

waveguide. TM, and TEZ modes are characterized by the

absence of the axial components of the magnetic field and

electric field respectively.

III. MAXWELL’S EQUATIONS

The surface integral formulation uses equivalent sources

to compute the electric and magnetic fields at all points

both inside and outside the waveguide. This is achieved

by applying the surface equivalence principle to the struc-

ture being analysed. The first step in the use of the surface

equivalence principle to represent fields in terms of equiv-

alent sources is to find the relation between the electric

and magnetic fields at any point in the waveguide shown

in Fig. 1.

For the waveguide shown in Fig. 1, Maxwell’s equa-

tions hold for each medium and for the dielectric medium

with material properties (pm, Em), is given by

~ X ~m = jue.~.

V X EM = –ju~~~~ (2)

where ~~, ~~ are the magnetic field and electric field re-

spectively in the mth medium. Equation (2) gives the re-

lation between En and En at any point in the mth medium.

Due to wave propagation along the z-direction, the fields

vary as e ‘j ‘z along that direction, where (3 is the propa-

gation constant of the wave.

Separating (2) into the longitudinal and transverse com-

ponents and making some manipulations [3], the electric

field can be rewritten in the form

jqum – –

‘(k; - 62) ‘1 x “m”
(3)

In (3), ~Z~, ~?l~ are the longitudinal and tr-nsve~se electric
fields in the mth medium respectively, H,n, 111~ are the

longitudinal and transverse magnetic field in the mth me-

dium respectively and ~1 is the transverse ~ operator.
For a TM, mode propagating in the waveguide, the ax-

ial magnetic field is zero (HZ~ = O) and hence the electric

fields from (3) are

l–
E& = — v~ x Elm

jtie~

Elm=– ‘2
jb – –

(km - ~’) 7 x “ x ‘m”
(4)

For a TEZ mode propagating in the waveguide, the axial

electric fieldl is zero (~Z~ = O) and hence the electric fields

from (3) are

E,. = o

(5)

IV. SOURCE FIELD RELATION

A wave propagating along the Z-direction in the wave-

guide shown in Fig. 1 produces fields Em and ~m in the

mth mediunn. Let the entire space be filled with the ma-

terial properties of the mth medium and let sources exist-

ing in this medium produce fields Em, Em inside the

boundary rmaking up the mth medium and zero fields

everywhere else. This equivalent problem is shown in Fig.

2 for the medium rn = 1 and the equations derived in this

section are lnecessary for applying the surface equivalence

principle to the waveguide of Fig. 1.

Consider sources ~, ~ producing fields Em, Em and (O,

O) in the homogeneous medium shown in Fig. 2. Here ~

and ~ represent the electric and magnetic sources respec-

tively. The electric fields produced by these current

sources can be evaluated by the method of superposition

[3], [4]. Representing the electric and magnetic fields ~n,

~~ in (3), (4), (5) in terms of equivalent electric and mag-
netic sources ~, M [3] the following equations are ob-

tained.
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Fig. 2. Sources in a homogeneous infinite medium.

A. TMZ Modes

B. TE, Modes

Em ==o

jwpm —
Elm=’ – ‘

(km - /32) ‘(k; - “)x’m + ‘lolm]

(7)

In equations (6), (7), ~Z~, ~ln, ~1~, ~Z~, ~1~ represent

the longitudinal magnetic vector potential, transverse

magnetic vector potential, transverse electric scalar po-

tential, longitudinal electric vector potential and trans-

verse electric vector potential in the mth mediulm, respec-

tively. These are given by

where the electric current ~ is longitudinally directed for

~z~ and transversely directed for ~1~, dl~ and the mag-

netic current ~ is longitudinally directed for ~ZM and

transversely directed for ~1~. In the above equations, C

represents the contour supporting. the currents, H$2) is the

zeroth order Hankel function of the second kind, R is the

distance between the source and field points, the primed

variables represent the source and the unprimed variables

represent the field.

V, INTEGRAL FORMULATION

Consider the waveguide shown in Fig. 1‘which is made

up of one conductor and one dielectric, existing in free

space. The material properties of free space and dielectric

medium are ( Po, eo) and (w,, c,), respectively. In Fig. 1,

S. represents the surface of the conductor, Sd is the surface

of the dielectric and fit, Zd are the unit outward normals

to surfaces SC and Sd, respectively.

Let a wave prc~pagate along the z,-direction in the wave-

guide. This wave produces fields (~o, ~o) and (El, ~1) in

the space between S,, Sd and inside Sd, respectively. Here

~ represents the electric field and ~ represents the mag-

netic field. Since the conductor is perfect and completely

surrounds the dielectric, zero fields are produced by the

wave at all points outside the surface SC. This is repre-

sented by (O, O) in Fig. 1.

The surface equivalence principle can now be used to

represent the fields at all points in the waveguide by means

of equivalent surface currents.

A. Equivalence in Medium (PO, 6.)

The waveguide in Fig. 1 has been redrawn in Fig. 3.

In this figure, the fields in the medium (PO, co) remain as

in Fig. 1 and the fields in medium (WI, el) have been re-

placed by null fields. Due to the absence of any field in-

side the surface &, the entire space can now be filled with

material properties of free space, namely (PO, Co).

Since the entire space is filled with the (PO, ~o) medium

and due to the jump in the tangential electric and magnetic

fields on surfaces SCand S& the waveguide can be repre-

sented by equivalent electric and magnetic currents which

produce the fields (O, O) outside SC, (~o, no) in the space

between SC, Sd and (O, O) inside L$d.These equivalent sur-

face currents exist on surfaces SCand Sd.

The magnitude of these surface currents are given by

the discontinuity in the tangential electric and magnetic

fields on surfaces SCand $f:

7C = –Ec x 77.(s;)

~d‘“ tid X ~O(S;)

~d = ~o(s;) X fi~. (8)

In the above equations, ~Cand ~d are the electric surface

currents on surfaces SCand sd respectively, Ed isthe mag-

netic surface CUITeIIt on surface &, ~o(SJ is the IIMgIV3iC
field just inside surface Se, ~o(S~) is the magnetic field

just outside surface sd and ~o(Sj) is the electric field just

outside surface Sa,. No magn:tic current exists on the sur-

face of the conductor (o + m) since the tangential electric

field is zero on the surface of a perfect conductor.

The CUJTeIIW~c,, ~d and ~d now aCt as sources producing

the fields (~o, Ho) and (O, O), at all points shown in Fig.

3.
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Fig. 3. Equivalence in medium.

From Fig. 3, the tangential electric and magnetic fields

have to vanish on surfaces S: and S;, which are the

boundary conditions. Making use of only the electric

fields, the bounda~ conditions are

iicxzo=o on S:

iidxzo=o on S;. (9)

In (9), the electric fields are produced by the current

sources JC, ~d and ~d.

B. Equivalence in Medium (p,, Cl)

The waveguide in Fig. 1 has been redrawn in Fig. 4

where the fields in region between S=, sd have been re-

placed by zero fields (O, O) and the fields in the region

inside & remain as (~1, El). SinCe the OUter SUrfaCe Of

the waveguide is made up of a perfect conductor, zero

fields exist in the region outside the surface SC. Since zero

fields exist in the region between SC, sd and outside SC,

the entire space can be filled with the medium with ma-

terial properties (pi, c~). This is shown in Fig. 4.

Due to the discontinuity in the tangential electric and

magnetiC fields on surface Sd, eleCtriC and magnetic cur-

rents exist on this surface whose magnitudes are given by

As before, El (S;) and ~l(S~) are the electric and mag-

netic fields just inside the dielectric surface Sd.

The currents ~j, ~j are the equivalent electric and

magnetic cu~ent sources that produce the fields (~1, ~1)

inside the surface & and zero fields at all other points, as

shown in Fig. 4.

The tangential electric and magnetic fields have to van-

ish on the surface just outside & which is the boundary

condition. Using only the electric field, the boundary con-

. . . . . . . . . . ----- ----- ----- ----- ----- ----
Y

(“u,, c,)

(o, o) l_..-X:

I+_
homogeneous medium n.

Fig. 4. Equivalence in medium

dition is

iidx~,=o on S;. (11)

In (11), El is the electric field produced by the surface

currents ~~ and fi~.

C. Electric Field Equations

Equations (9) and (11) represent three equations in five

unknowns. From the original waveguide problem in Fig.

1, due to the absence of currents on the waveguide walls,

the tangential electric and magnetic fields have to be con-

tinuous on the surface Sd. Hence

iidx~()=%dx~l

Bdxpo=jidxg,. (12)

Making use of (8) and (10) in (12):

Xld = –GA (13)

~d= ‘~j (14)

Hence (9) and (11) can be reduced to three equations

in three unknowns which are

Z, X ~O(~C, ~d, Ed) = O on S:

1
in medium (PO, eo)

fid X ~O(~C, ~& zd) = O on S~

iid X ~](–~d,‘Ed) = O on S; in medium (PI, El).

(15)

Equation (15) is the electric field integral equation that

can be used to characterize the waveguide in Fig. 1 which

is made up of one conductor and one dielectric. In (15),

the electric fields produced by the various sources are

given by either (4) or (5) depending on whether a TM, or

TEZ mode is propagating in the waveguide.
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For a waveguide containing NC conductors and Nd di-

electrics ([3]), the number of equations and unknowns in

the electric field integral equation is N= + 2 Nd.

VI. METHOD OF MOMENTS

Method of moments [5] can be used to reduce (15) to

a matrix equation, which can then be numerically solved

on a computer.

Based on [5] and Figs, 5 and 6, the currents are ex-

panded as

~C = ~ 1,~,
j=l

n+m

>~ = z z,7i
i=n+l

n+2m

Pd = X li~i-m (16)
i=n+m+l

and the weighting functions as
n+m

77. = ~:, lv~; Td = x wk. (17)
k=n+l

Expanding the currents ~c, ~d, fid in terms of expansion

functions (16) and testing equation (15) with the set of
weighting functions (17), [3], [5], a matrix equation of

the form

[z] [z] = [0] (18)

is obtained where [Z] is a square matrix and [Z] isa vector

with elements representing the current coef,licients.

In this paper, pulses have been used as the expansion

functions for the currents and a set of delta functions have

been used as the weighting functions.

VII. TM FORMULATION

Let a TM: mode propagate in the waveguide shown in

Fig. 1. Since no explicit relation exists between the prop-

agation constant f? and the wavenumber in free space, a

set of equations have to be solved to get this relation.

Equation (6) for ~Z~ can be used to compute the relation

between @and the wavenumber in free space kO.

7~= P,(Z?’– 1,-1)2; i=l,z,...,n

(19)

[

1 O<l’–l, -*<li–l, -l
P,(1’ ‘- l,- ~) =

o otherwise

71= P~(Z’ – 1,)2/

i=n+l, n+2, ”””, n+m

(20)

[

1 ()<lf-l,~l;+,-zi
P, (1’ – Q =

o otheiwise

~,-~ = Pi-~(1’ – l,-m)i;_m

i=n+m+l, ”.”, n+2m

P,(1’

t

v

match points

.L1) @ - kl/2)

t

‘1RN >,,‘1 t >,
1,.1 1, 1~., lk-l fz 1~

Fig. 5. Patching details for TM formulation.

[

1 C)<l’ -l. l–in < ‘i–m+l

Pi - ~(1’ – 1,- rr,) = – 1,_,,,

(0 otherwise

(21)

In the above equations, Z j and ~~_ ~, are unit tangential

vectors on the i th and (i – m)th subsection supporting the

electric and magnetic currents respectively. The former is

the axially directed unit vector and the latter is the trans-

versely directecl unit vector.

The weighting functions are chosen to be delta func-

tions which can be represented as

~k ‘z ti(z – lk- ,/2) Al~yk

k=l,2, ”.”, n (22)

[

1 1 = l&,/~
6(1 – lk _ [ /2) “

o otherwise

Alk “ lk – lk-~; 1~-,/~ = ‘k ‘21’- ‘ (23)

~’ ‘: 8(1 – lk+, /2)Al&

k=n+l, n+2, .””, n+m

(24)
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P3(1’ – 12)

Pn+2(l’ – 1“+2)

Pl(l’ .– ii-l) ri(r)

‘(’-L1

1

x

1 1
~.

2(li_~ – ii_,,/J c = – 2(li – ii_,/z)

b=
1

2(li-1/Z – Ii-1)
d=- 1

2(li+,/z – lJ

Fig. 6.Patching details for TE formulation.

[

1 1 = 1~+, /2 (k: - 62) ~ ~i

1

li

6(1 – 4+,/2) = ~ – A-l~ ~,_, a(l – 1~+, /J
otherwise 4(JXO izl

Pi(l’ – li _ ,)H~2)(~R) dl’ – Al~
(k; - /32)

Al~ = 1~~1 – lk; lk~,/2 = 1’+ ‘2+ ‘k. (25) “ 4wqJ
n+m

~ ]i ~~+’ 6(Z – zk+~/’2)f’i(l’ – Zi)As before, ~k is the axially directed unit vector on the kth “ i= ~+, ,

subsection supporting the k th weighting function.

Expanding the currents in (6) and testing (6) with the . ~ “~ ~,
H~2)(~R) dl’ + A 1’

weighting functions ([3]) reduces it to the form 4j
1

i=n+m+l

(kt - 62)~ 1, !
li

–Al~
40J60

~i_, 8(Z – Z’-l/~)~i(Z’ – Zi_l)
i=l

- H$2)(~R) dl’ – A 1’
(~i – P’) ‘; Ii

4L’XO i=n+l

“J

li+i

6(Z _ Zk- ,/2)~i(l’ _ li)H$2)(~R) dl’
li

“ Hf2)(~R) dl’ = O k=l,2, ”””, n

@--=-F ‘“m
H~2)(Nt~R) dl’ – A lk . .XZi

c%”~-m) 4’ ‘=n+m::
6(1 – l’+1/2)P,_~(l’ – l_ )

H{2)(~R) dlr = O

k=n+l, ”.”, n+m. (26)
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At a certain frequency Q and a fixed value of the prop-

agation constant 6 (26) is a matrix equation of the form

(18) where [Z] is a (n + 2m) x (n + h) matrix and [Z]

is a (n + h) x 1 vector with elements 11, 12, “ “ “ , 1~,
. . . z9 II+W(9“ “ “ , Zn+ ~m. In (26), ti~-n is the unit outward

normal to the (i – rn)th segment supporting the magnetic

current ~i _ ~, H\2) is the first order Hankel function of

the second kind, ~ is the vector from the source to the

field point and R is the distance between the source and

field points. In (26), all primed variables represent the

source and all unprimed variables represent the field.

VIII. TE FORMULATION

Let a TEZ mode propagate in the waveguicle shown in

Fig. 1. This mode is characterised by the absence of the

electric field along the axial direction of the waveguide.

The transverse electric field produced by equivalent sur-

face currents on the waveguide contour is given by (7).

The relation between the propagation constant /3 and

the free space wavenumber kO can be obtainecl by solving

the electric field integral equation obtained by substituting

(7) into (1!5).

In the above equations, the electric currents~C, ~d are

transversely directed and the magnetic current Md is axi-

ally directed.

The expansion functions have been chosen to be pulses:

7i = P~(l’ – lz_,)7[ i=l,2, ”””, n

(27)

{

1 OS1’–l~--lSllill--l
P,(l’ – ll_,) =

o otherwise

i=n+l, n’+2, ”””, n+m

{

1 O<l’–li=li+l–li
P~(l’ – ii) =

o otherwise

i=n+m+l, ”””, n+2m

(29)

[

1 0s1’–1 <ll-m+l,—m —

Pi-~(1’ – 1,-~) = – l,-m

LO otherwise

In the above equations, i; and 2/-~ are unit tangential

vectors on the i th and (i – m)th subsection supporting the

electric and magnetic currents respectively. The former is

the transversely directed unit vector and the latter is the

axially directed unit vector.

Using the expansion functions defined above, the di-
vergence of the electric current which represents the

charge is expanded as

n

(30)

n+m

‘F; “ 7d= i=:+, z,rt(r) (31)

where

1
1, s 1’ s 1,+,/2

~ii ● l/z – li)

ri (1’) = { –1
1,+,/2 5 1’ s IL+,

2(li+l – li+l/J

!
–1

1,+1 s 1’ s 1,+{1/2
Zi+ll/2 – ‘1+1)

i=n+l, ”.”, n+m (33)

An approximation has been made while choosing the

expansion functions for the divergence of the electric cur-

rent in the above equations [3].

A set of delta functions have been used as the weighting

functions.

~k = 6(1 – lk-i/2) Alkik

k=l,2, ”””, n

(

1 1 = l&,/2
8(1 – l~_*/J = o

otherwise

(34)

Alk = lk – lk-~; lk-~/~ = ‘k +21k- ‘ (35)

wk = 6(1 – l~h ,/z) Alkik

k=n+l, n+2, ””, n+m

(36)

[

1 1 = lk+,/2
6(Z – lk+,/2) = ~

otherwise

Alk = lk+l – [~; 1~+,/2 = lk+ ‘2+ lk . (37)
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As before, ik is the transversely directed unit vector on

the kth subsection supporting the kth weighting function.

Fig. 6 shows the representation of the expansion and

weighting functions for a dielectric loaded waveguide

supporting a TEZ mode.

Using the expansion functions, weighting functions and

method of moments ([5]), (7) can be written in the form

k=n+l’, n+2, ”.”, n+m

– T7t “VI XFZ1=O

k=n+l, n+2, ”””, n+m (38)

where
n

~

1,

W:”zlo=%zi
J] i=l

~l_l 6(1 – l&,/’J

“ P,(l’ – li-,)(z~ “ loll$)(ell) dl’

k=l,2, ”””, n (39)

. Pi(l’ – li-,)(i~ “ LWF(JF7-) d’

“ Pi (1’ – J?i)(i~ “ ~/)Hb2)(mR) dl’

k=n+l, .o+, n+m (40)

T7j 1 i 1, s“+’”“ ~[olo = ~i=, (a(l - 1,)
1,-li/2

— ~(~– Zk - l))ri(z’)~f2)(-~) d’

n+m

!

1,+1[/2

+: Z Ii
4J i=n+l

~,_ ,,2 (8(1 - lJ

– (3(1 –

k=

– 6(1 –

Zk- l))ri(z’)@?(~@ dl’

1,2, .””, n (42)

!

1,+!/2

(6(1 – Zk+ ,)

li- 11/2

lk))ri(l’) @)(qR) dl’

n+m

!

1,+ [1/2

+: Z Zi
4J i=n+l

(~(~ – Zk+ ,)
[)- 1/2

—
w – l~))r, (1’) Hi2)(~J0 dl’

k=n+l, .”. ,n+m (43)

1,+1[/2

w: “
lJ i~~l ‘i jl,-1,,

vlc#q, = –- (~(1 – Zk+ ,)

— 6(1– Zk))ri (~’) @2)(~R) dl’

k=n+l, ”””, n+m (44)

“ Pi-~(1’– li_J

. Hf2)(~R) dl’

k=l,2, ”””, n (45)

“ Pi-~(1’– li-~)

“ H~2)(~R) dl’

k=n+l, .”. ,n+m (46)

“ Pi_~(l’ – ii-J

. H\2)(J~R) dl’

k=n+l, ”oo, n+m (41) k=n+l, ”””, n+m. (47)
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In (42), (43), (44), a finite difference operator has been

used to represent the gradient operator ~l. The unit vector

iik is the unit outward normal on the k th subsection sup-

porting the kth weighting function. As in the earlier sec-

tions, the primed variables represent the source, the un-

primed variables represent the field and H\2) is the first

order Hankel function of the second kind.

At a certain frequency u and fixed propagation constant

(3, (38) becomes a matrix equation of the form (18).

IX. /3-co RELATION

The propagation constant curve represents the variation

of the propagation constant (3 with frequency o or with

the free space wavelength &.

As explained earlier, at any fixed co and (3, the wave-

guide in Fig. 1 supporting a TM, or TEZ mode can be

reduced to the matrix equation

[z] [z] = [0]. (48)

Assuming the above equation does represent a mode prop-

agating in the waveguide, a non-trivial solution has to ex-

ist for the equivalent surface currents since the fields are

not zero inside the waveguide. Since the vector [Z] rep-

resents the current coefficients, a nomtrivia]l solution has

to exist for the vector [1] due to which the matrix [Z] has

to be singular. Hence

det [Z] = O. (49)

Equation (49) is the same as the condition derived for

a hollow conducting waveguide supporting a,mode in [1].

Equations (48) and (49) can therefore be represented in

the simpler form

[z] [z] = Am,n[z] (50)

where h~in is the minimum absolute eigenvalue of the ma-

trix [Z] and [1] is the associated eigenvector. Based on

(50), a mode exists for a certain u and (3 if the minimum

eigenvalule h~in is zero which represents the singular con-

dition (49).

A scanning procedure has been used here to obtain the

13-@curve. Consider the waveguide shown in Fig. 1. This

guide is made up of a perfect conductor completely cov-

ering a dielectric with material properties ( p 1, ~1). Since

the perfect conductor completely covers the dielectric, ~

is a purely real quantity. Also if the wavenumber in free

space is represented by k. and if the material is non-mag-

netic ( p ~ = PO) then ~ takes on values between

O<@=kO; koSflS&kO (51)

where El = 606,1. Based on this range, 13can be fixed at

some value and the wavenumber k. or wavelength ho

scanned over the range given in equation (51) to obtain

the propagation curve. The wavelength X. (for a fixed @

at which the absolute value of the minimum eigenvalue

h~in is minimum gives the relation between ho and ~.

Based on relation (51), it may be much easier to nor-

malize ~ with respect to k. and fix this quantity. The range

taken for this normalized 6 is

Ospsl; lsBs& (52)

where F = /3/ ko, The freespace wavelength ho can now

be scanned to find the value of ho at which absolute ~~i.

is minimum. This technique however led to large errors

in some case~. Hence it is worthwhile to note that fixing

P instead of/3 produced much better results.

The matrix [Z] used in the matrix equation is an unsym-

metric, complex matrix. Hence the eigenvalues of this

matrix are complex and so are the corresponding eigen-

vectors.

The eigenvector corresponding to any point on the

propagation constant curve represents the equivalent cur-

rents existing on the surface of the waveguide. Since the

currents represent the discontinuity in the tangential elec-

tric and magnetic fields, the eigenvector represents the

tangential electric and magnetic fields on the surface of

the waveguide. These tangential electric and magnetic

fields on the waveguide surface represent the exact fields

on the guide supporting the mode. The fields inside the

waveguide can be found by following a reverse procedure

whereby the vector [1] can be used in the electric field

integral equations to solve for the fields everywhere.

X. RESULTS

A. Partially Filled Circular Guide

Fig. 7 shows, a partially filled circular waveguide which

is made up of an outer conductor and an inner dielectric

shell, existing in free space. This guide can support a TMZ

mode.

Since the conductor completely covers the dielectric

shell, a wave lpropagating in this guide does not radiate

any fields into the space outside the guide. An analytical

solution exists for the relation between the propagation

constant /3 and the free space wavenumber k. which is the

solution to a characteristic equation [4].

A total of 501subsections were used to model the wave-

guide shown in Fig. 7 of which 20 were used to model

the conductor, 20 to model the outer surface of the di-

electric shell and 10 to model the inner surface. This pro-

duced a total of 80 unknowns of which 20 represented the

electric surface currents ~., 30 represented the dielectric

surface currents ~d and 30 represented the magnetic sur-

faCe CUITentS ~tid. The SUrfaCe integral formulation was

used to obtain the (3 – k. relation for the waveguide sup-

porting a TMZ mode. Fig. 8 shows this relation for the

first TM, mode for two relative dielectric constants c. =

2.54 and c, = 10.2. The star represents the exact solution

which agrees yell with the computed data.

The eigenvector at cut-off is shown in Fig. 9 which rep-

resents the tangential electric and magnetic fields on the

surfaces of the conductor and dielectric shell. The x-axis

represents the unknown and the y-axis is the correspond-

ing current coefficient. Both the real and imaginary parts

of the current coefficient have been plotted in Fig. 9. The
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manner in which the 80 unknowns have been split into

conductor and dielectric currents are given below.

1-20 = ~, on the surface of the conductor

21-40 = j~ on the surface of the dielectric shell

41-50 = ~d on the inner surface of the dielectric shell

51-70 = &fd on the outer surface of the dielectric shell

71-80 = Md on the inner surface of the dielectric shell.

Based on the analytical solution, there can be no circum-

ferential (~) variation of the electric and magnetic fields

for a TM, mode propagating in the filled circular guide of

Fig. 7. Since the equivalent surface currents represent the

tangential electric and magnetic currents, they do not show

any d variation as can be seen from the constant eigen-

ve~tor over any surface in Fig. 9. Moreover, since-the

tangential electric field is zero on the surface of the con-

ductor, the magnetic currents representing numbers 51-

70 are all zero (see Fig. 9). Since the outer surface of the

dielectric shell touches the conductor, the currents ~C, ~d

should be equal and opposite as can be verified from Fig.

9.

B. Centered Dielectric Slab Waveguide

Fig. 10 shows a waveguide made up of an outer con-

ductor and an inner centered dielectric slab. This wave-

guide supports a TEZ mode. An analytical solution exists

for the fl-ti relation which is given by the solution to a

transcendental equation [4]. The dominant mode propa-

gating in this waveguide is a TEIO mode.

The surface integral formulation was used to obtain the

propagation constant curve for the guide shown in Fig.

10. A total of 102 unknowns were used to obtain the ~-u

relation of which 58 represented the conductor electric

surface current ~C, 22 represented the dielectric electric

surface current Jd and 22 represented the dielectric mag-

netic surface current Rd. The ~-~ relation obtained for the

first two TEZ modes propagating in the waveguide have

been plotted in Fig. 11. The star represents the values

obtained from the analytical solution.

The distribution of the eigenvector at cutoff is shown

in Fig. 12. As in the previous section, the x-axis repre-

sents the number of the unknown and the y-axis represents

the corresponding current coefficient I. Both the real and

imaginary part of the current coefficient have been shown

in the figure. From the analytical solution, the electric and

magnetic fields show no variation along the x-direction

and show a sinusoidal variation along the y-direction.

Since the surface currents represent the tangential electric

and magnetic fields, they should show the same variation.

From Fig. 12, there is no variation of the current ~C in

regions ~ – B, E – F, ~C varies in a sinusoidal manner

inregions B–C– D–E, F –G–H–Aand~d,@d

show no variation in regions H – C, G – D. The mag-

netic current ~d is zero in regions c – D, G – H since

the tangential electric field is zero on a perfect conductor,

Hence the surface currents show the same distribution as

the tangential fields obtained from an exact solution.

C. Insulated Finline

Fig. 13 shows an insulated finline. The dominant mode

propagating in an insulated finline is a hybrid mode. Since
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hybrid modes are characterised by the existence of the

axial components of the magnetic and electric fields, they

can be represented as a superposition of the TMZ and TEZ

modes. H[owever at cutoff (/3 = O), the TMZ and TEZ

I (h ,0) II
Y

L x

dielectric

conductor

&--__+
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thickness = 0.01

a/b = 2

Fig. 13. Insulated finline.

TABLE I

INSULATED FINLINE: DOMINANT MODE NORMALIZED CUT-OFF FREQUENCY

(s/a = 1/16)

Num. d/b b/A,. b/A<.

1 0.125 0.1298 0.1372’()

2 0.25 0.1565 0.1630’()

3 0.5 0.1945 0.1989’”

4 0.75 0.2174 0.2229’”

TABLE II

INSULATED FINLINE: DOMINANT MODE NORMALIZED CUT-OFF FREQUENCY

(s/a = 1/8)

Num. d/b b/AC b/k<.

1 0.125 0.125 0.1285’”

2 0.25 0.1477 0.1512’()

3 0.5 0.1808 0.1853’()

4 0,75 0.2045 0.2090’(’

equations decouple and hence the cutoff frequencies of the

insulated finline can be obtained from either the TMZ

equations or TEZ equations.

Tables I and 11give the normalized cut-off wavelengths

of the dominant mode, for various dimensions of the in-

sulated finline. These results agree very well with the val-

ues obtained using the transverse resonance method [10].

The slight discrepancy in the two results is because in-

sulated fins of finite thickness were used in this paper and

zero thickness fins were used in [10].

XI. DISCUSSION AND CONCLUSION

A detailed analysis on the use of the surface integral

method to treat dielectric loaded waveguides supporting

TM, and TEZ modes has been explained in this paper. The

points on the propagation constant curve were obtained

by solving an integro-differential equation. The surface

integral methocl did not produce any spurious modes for

the ~egion O < F s /co. However, this wasn’t true for the

region k. s F s ko~ since this method did produce

smtrious modes in some cases. These spurious modes,

~owever, couldl easily be identified as being spurious by

looking at the eigenvector corresponding to the minimum

eigenvalue. A mode can be identified as being spurious
us~ng the following two criteria.
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The magnetic current vanishes on the surface of a per-

fect conductor. Since the eigenvector corresponding to the

minimum eigenvalue represents the currents on the wave-

guide, the eigenvector should contain zero magnetic cur-

rents at all points where a dielectric touches a conductor.

The eigenvector corresponding to some spurious modes,

however, produced finite magnetic currents at points

where a conductor was in contact with a dielectric. This

was the reason why the number of unknowns was not re-

duced by assuming that zero magnetic currents existed at

points where a dielectric was in contact with a conductor.

Hence a mode whose eigenvector contains non-vanishing

magnetic currents at points where a dielectric touches a

conductor can be deemed as being a spurious mode.

There were some spurious modes whose eigenvector did

have zero magnetic currents at points where a dielectric

touched a conductor. As mentioned earlier, the surface

integral method did not produce any spurious modes in

the region O < ~ < /zo. The eigenvector in this region

represents the variation of the tangential electric and mag-

netic fields on the surface of the waveguide. Since the

distribution of the tangential electric and magnetic fields

has to remain the same irrespective of the region, for any

mode, the eigenvector distribution in the region /c. s ~

s ko~ has to be the same as the eigenvector in the re-

gion O < F < ko. This criterion was used to eradicate the

rest of the spurious modes (if any).

The surface integral method is a very powerful and use-

ful technique for treating waveguides with complex ge-

ometries.
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