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Computation of TM and TE Modes in Waveguides
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Abstract—-The surface integral formulation has been used
here for the computation of TM and TE modes propagating in
dielectric loaded waveguides. This formulation makes use of
the surface equivalence principle whereby the field at any point
internal or external to the waveguide can be expressed in terms
of equivalent surface currents. This procedure reduces the
original problem into a set of integro-differential equations
which is then reduced to a matrix equation using method of
moments. The solution of this matrix equation provides the
propagation characteristics of the waveguide and the equiva-
lent surface currents existing on the waveguide walls. The
equivalent surface currents can be used to compute the fields
at all points, both inside and outside the waveguide. The sur-
face integral method has been used to compute the propagation
characteristics of waves propagating in dielectric loaded wave-
guides. The computed results agree very well with analytical
and published data. However, the use of the surface integral
method on dielectric loaded waveguides sometimes leads to the
existence of spurious modes. A method has been illustrated
which can be used to remove these spurious modes.

I. AN OVERVIEW

METHOD based on a surface integral formulation

has been used here for the computation of TM, and
TE, modes propagating in dielectric loaded waveguides.
This formulation is based on the surface equivalence prin-
ciple whereby the structure is modeled by equivalent sur-
face currents that now represent the sources producing
fields in an homogeneous medium. A method of moments
technique has been used to compute the dispersion rela-
tion and the equivalent surface currents using which the
fields at all points in and around the waveguide can be
computed. The waveguide can now be easily modeled
since the waveguide parameters can be calculated from
the fields. The authors believe that the surface integral
formulation used here is a very easy and effective tech-
nique to analyze waveguides having very complex geo-
metries.

The surface integral method has been used in the past
by Swaminathan et al. [1] and Spielman et al. [2] to ana-
lyze hollow waveguides. The method presented in this pa-
per is an extension of [1].
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A dielectric loaded waveguide is made up of multiple
conductors and dielectrics. Due to the presence of multi-
ple dielectric mediums, no simple relation exists between
the propagation constant and frequency. Hence, unlike a
hollow waveguide [1], [2], the cutoff wavenumber alone
cannot be used to completely characterise the dielectric
loaded waveguide. Three types of modes can propagate
in a waveguide namely, TM, TE and hybrid. This paper
gives a detailed account of the use of the surface integral
method to compute the TM and TE modes propagating in
dielectric loaded waveguides.

II. INTRODUCTION

Consider a dielectric loaded waveguide of arbitrary
cross section existing in free space, as shown in Fig. 1.
The conductor and dielectric are non-touching and the
space between them is filled with free space. The conduc-
tor is assumed to be a perfect electric conductor (¢ = ),
thus making the tangential component of the electric field
vanish on its surface. The waveguide is infinite along the
z-direction and has a finite cross-section along the x-y
plane. Since the waveguide is made up of multiple di-
electric mediums, the permeability and permittivity of
each dielectric differs from its surrounding medium.

Consider waves travelling along the z-direction in the
dielectric loaded waveguide shown in Fig. 1. These waves
can be represented by wavefunctions of the form

Y = hylkg)nky)e 7% m=0,1 (1)

where v, are wavefunctions in the mth medium, 4,,(k,,,)
and h,(k,,) are harmonic functions along the x and y di-
rections respectively and k,,,, k,,, are separation parame-
ters given by the separation equation k2, + k_%m + 82 =

k2. In (1), B is the propagation constant and k, is the
, p

wayenumber in the mth dielectric medium given by k,, =
@V, €,, Where w is the angular frequency of the wave
propagating in the waveguide and p,,, €, are the perme-
ability and permittivity of the mth medium respectively.
The wavefunctions ,, in (1) completely characterize
the waveguide since these wavefunctions can be used to
find the electric and magnetic fields at all points inside
and outside the waveguide. Due to the presence of mul-
tiple dielectric regions, there is no simple relation be-
tweer the propagation constant 8 and the cut-off wave-
number as was possible with the hollow waveguides [1],

[2].
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Fig. 1. Dielectric loaded waveguide.

Hence to get a relation between § and the wavenumber
in free space kj, it is necessary to satisfy the continuity of
the tangential components of the electric and magnetlc
fields at any interface.

A surface integral formulation has been used here to
characterise dielectric loaded waveguides. This formula-
tion makes use of the surface equivalence principle to rep-
resent the waveguide by equivalent currents that produce
the same fields as in the original problem. The problem
is then reduced to an eigenvalue matrix equation and
solved as in [1].

TM, and TE, modes can propagate in a dielectric loaded
waveguide. TM, and TE, modes are characterized by the
absence of the axial components of the magnetic field and
electric field respectively.

. MAXWELL’S EoquarTions

The surface integral formulation uses equivalent sources
to compute the electric and magnetic fields at all points
both inside and outside the waveguide. This is achieved
by applying the surface equivalence principle to the struc-
‘ture being analysed. The first step in the use of the surface
equivalence principle to represent fields in terms of equiv-
alent sources is to find the relation between the electric
and magnetic fields at any point in the waveguide shown
in Fig. 1.

For the waveguide shown in Fig. 1, Maxwell’s equa-
tions hold for each medium and for the dielectric medium
with material properties (., €,), is given by

V x H, = Jwen Ey

—jwum Hm (2)

where H,,, E,, are the magnetic field and electric field re-
spectively in the mth medium. Equation (2) gives the re-
lation between E,, and H,, at any point in the mth medium.
Due to wave propagation along the z-direction, the fields

V XE,=

vary as e /" along that direction, where 8 is the propa-
gation constant of the wave.

Separating (2) into the longitudinal and transverse com-
ponents and making some manipulations [3], the electric
field can be rewritten in the form

— 1 — —
Ezm = _]:E_ 1 X Iylm
- B = =
Elm = _(kz _ 62) z X Vl X Ezm
R
- (k2 _mBZ) Vl X Hzm' (3)

In (3), E,,, Ey, are the longitudinal and transverse electric
fields in the mth medium respectively, Hzm, H,, are the
longitudinal and transverse magnetic field in the mth me-
dium respectively and V, is the transverse V operator.
For a TM, mode propagating in the waveguide, the ax-

ial magnetic field is zero (}_Izm = () and hence the electric
fields from (3) are

— . 1 — —

E,, = —V, X H,,

JWEy,
E, = —#BZ—)Z X V; X E,,. )

For a TE, mode propagating in the waveguide, the axial
electric field is zero (E,,, = 0) and hence the electric fields
from (3) are

E, =0

J@H

LS V, X H,,. (5)

E‘lm: -

IV. SourcE FIELD RELATION

A wave propagating along the z-direction in the wave-
guide shown in Fig. 1 produces fields E,, and H,, in the
mth medium. Let the entire space be filled with the ma-
terial properties of the mth medium and let sources exist-
ing in this medium produce fields E,, H, inside the
boundary making up the mth medium and zero fields
everywhere else. This equivalent problem is shown in Fig.
2 for the medium s = 1 and the equations derived in this
section are necessary for applying the surface equivalence
principle to the waveguide of Fig. 1.

Consider sources J, M producing fields l_?m, }_Im and (0,
0) in the homogeneous medium shown in Fig. 2. Here J
and M represent the electric and magnetic sources respec-
tively. The electric fields produced by these current
sources can be evaluated by the method of superposition
[3], [4]. Representing the electric and magnetic fields E,,
H,in (3), (4), (5) in terms of equivalent electric and mag-
netic sources J, M [3] the following equations are ob-

tained.
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Fig. 2. Sources in a homogeneous infinite medium.

A. TM, Modes
— k2 — B3 _ -
Ezm = S_'m-ﬁﬁ_)Azm - Vl X Flm
JWEy
= _ 8 = — — =
Elm__Ilezm"vIXFzm—*—Jﬁz X Flm' (6)
B. TE, Modes
E, =0
T jw/"m 2 N4 o
Epm=———F—— ki — B4 + V05,
y TSR )[( VA, 1Dl
-V, X Fy,. @)

In equations (6), (7), Aums Apm> Dimes Foms Fin represent
the longitudinal magnetic vector potential, transverse
magnetic vector potential, transverse electric scalar po-
tential, longitudinal electric vector potential and trans-
verse electric vector potential in the mth medium, respec-
tively. These are given by

- - 1 -
Ao A = - <§>CJH62>(Jki - B*Ry dl

1(§_
m = . Vi
(o} 4j}cl

- _ 1 __
Fo; Fyy = ry <§>c MHPk;, — B*R) dI'

TJHP WK — B%R) dl’

where the electric current J is longitudinally directed for
A,, and transversely dirécted for A;,, ¢,, and the mag-
netic current M is longitudinally directed for F,, and
transversely directed for Fj,. In the above equations, C
represents the contour supporting the currents, H§ § is the
zeroth order Hankel function of the second kind, R is the
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distance between the source and field points, the primed
variables represent the source and the unprimed Varlables
represent the field.

V. INTEGRAL FORMULATION‘

Consider the waveguide shown in Fig. 1'which is made
up of one conductor and one dielectric, existing in free
space. The material properties of free space and dielectric
medium are (g, €;) and (uj, €,), réspectively. In Fig. 1,
S, represents the surface of the conductor, S, is the surface
of the dielectric and 7, 71, are the unit outward normals
to surfaces S, and S, respectively. '

Let a wave propagate along the z-direction in the wave-
guide. This wave produces fields (Ey, Hy) and (E;, H)) in
the space between S, S, and inside S, respectively. Here
E represents the electric field and H represents the mag-
netic field. Since the conductor is perfect and completely
surrounds the dielectric, zero.fields are produced by the
wave at all points outside the surface S.. This is repre-
sented by (0, 0) in Fig. 1.

The surface equivalence principle can now be used to
represent the fields at all points in the waveguide by means
of equivalent surface currents.

A. Equivalence in Medium (p, €o)

The waveguide in Fig. 1 has been redrawn in Fig. 3.

In this figure, the fields in the medium (pq, €p) remain as
in Fig. 1 and the fields in medium (u,, ¢;) have been re-
placed by null fields. Due to the absence of any field in-
side the surface S, the entire space can now be filled with
material properties-of free space, namely (ug, €).
- Since the entire space is filled with the (g, €9) medium
and due to the jump in the tangential electric and magnetic
fields on surfaces S, and S, the waveguide can be repre-
sented by equivalent electric and magnetic currents which
produce the fields (0, 0) outside S,, (Eg, H,) in the space
between S,, S, and (0, 0) inside S;. These equivalent sur-
face currents exist on surfaces S, and S,;.

The magnitude of these surface currents are given by
the discontinuity in the tangential electric and magnetic
fields on surfaces S, and S

,Jc = —n X HO(SC—)
Ty =1y X Hy(S$)
M; = Ey(S7) X Ag. - ®

In the above equations, J, and J, are the electric surface
currents on surfaces S. and S, respectively, M, is'the mag-
netic surface current on surface Sy, Ho(S ) is the magnetic
field just inside surface S, Hy(S 7) is the magnetic field
just outside surface S; and Ey(S;) is the electric field just
outside surface S,. No magnetic current exists on the sur-
face of the conductor (0 — o) since the tangential electric
field is zero on the surface of a perfect conductor.

The currents JC, J,and Md now act as sources producing
the fields (Ey, Hy) and (0, 0), at all points shown in Fig.
3. ‘
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Fig. 3. Equivalence in medium.

From Fig. 3, the tangential electric and magnetic fields
have to vanish on surfaces S and S;, which are the
boundary conditions. Making use of only the electric
fields, the boundary conditions are

fi.XxEp=0 onS/S
on §;. ©)

In (9), Ehe_electric_ fields are produced by the current
sources J,, J;, and M,.

ﬁdXE():O

B. Equivalence in Medium (u,, €;)

The waveguide in Fig. 1 has been redrawn in Fig. 4
where the fields in region between S, Sd have been re-
placed by zero fields (0, 0) and the fields in the region
inside S; remain as (E,, H,). Since the outer surface of
the waveguide is made up of a perfect conductor, zero
fields exist in the region outside the surface S,.. Since zero
fields exist in the region between S,, S, 4nd outside S.,
the entire space can be filled with the medium with ma-
terial properties (w4, €;). This is shown in Fig. 4.

Due to the discontinuity in the tangential electric and
magnetic fields on surface S,, electric and magnetic cur-
rents exist on this surface whose magritudes are given by

Jo = —Ag x H(S2)

| M= ~ES5) % . (10)
As before, E(S;) and H,(S;) are the electric and mag-
netic fields just inside the dielectric surface S,.

The currents J), M) are the equivalent electric and
magnetic current sources that produce the fields (E;, H;)
inside the surface S, and zero fields at all other points, as
shown in Flg 4.

The tangential electric and magnetic fields have to van-
ish on the surface just outside S;, which is the boundary
condition. Using only the electric field, the boundary con-

(w1, €1)
0,0 X
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7 (441, €1) N
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Fig. 4. Equivalence in medium.

dition is
(11

In (11), _El is the electric field produced by the surface
currents J; and M.

ﬁdXE'l=0 OnS;.

C. Electric Field Equations

Equations (9) and (11) represent three equations in five
unknowns. From the original waveguide problem in Fig.
1, due to the absence of currents on the waveguide walls,
the tangential electric and magnetic fields have to be con-
tinuous on the surface S,;. Hence

ﬁdXE):ﬁdXEl

fiy X Hy = iy X Hj. (12)

Making use of (8) and (10) in (12):
M; = -M; (13)
J, = =T (14)

Hence (9) and (11) can be reduced to three equations
in three unknowns which are

ﬁc X EO(JC’ Jd9 Md) =0
ﬁd X E‘()(‘707 jda Md) =0
g X Ex(=J;, =My =0

on S/

¢ in medium (py, €p)
on Sd

in medium (u,, €,).
(15)

Equation (15) is the electric field integral equation that
can be used to characterize the waveguide in Fig. 1 which
is made up of one conductor and one dielectric. In (15),
the electtic fields produced by the various sources are
given by either (4) or (5) depending on whether a TM, or

onS,

TE, mode is propagating in the waveguide.
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For a waveguide containing N, conductors and N, di-
electrics ([3]), the number of equations and unknowns in
the electric field integral equation is N, + 2N,

VI. METHOD OF MOMENTS

Method of moments [5] can be used to reduce (15) to
a matrix equation, which can then be numerically solved
on a computer.

Based on [5] and Figs. 5 and 6, the currents are ex-
panded as

'70 = ,;1 Il_l
n+m
jd = Z Il‘7l
i=n+1
. n+2m _
M,= X IM_, (16)
i=n+m+1
and the weighting functions as
n n+m
W.=2Ws W= 2 W. an
k=1 k=n+1

Expanding the currents J,, J,, M, in terms of expansion
functions (16) and testing equation (15) with the set of
weighting functions (17), [3], [5], a matrix equation of
the form

2117 = [0] (18)

is obtained where [Z] is a square matrix and [/] is-a vector
with elements representing the current coefficients.

In this paper, pulses have been used as the expansion
functions for the currents and a set of delta functions have
been used as the weighting functions.

VII. TM FORMULATION

Let a TM. mode propagate in the waveguide shown in
Fig. 1. Since no explicit relation exists between the prop-
agation constant 8 and the wavenumber in free space, a
set of equations have to be solved to get this relation.

Equation (6) for E,,, can be used to compute the relation
between  and the wavenumber in free space k.

=Pl —L_pz! i=1,2,--",n

(19)
1 O<!' -l =L -1_,
Pz(l' - li—l) = ,
0 otherwise
Jo =P - 1)z}
i=n+1l,n+2 -, n+m
(20)
1 O=l—-6L=10L, -4
P,(l'—li)z ' ! i+ 1
0 otherwise
Mi—m = Pi—m(ll - lt—m)i!—m
i=n+m+1,---,n+2m

L

ln+m—l ln+4

iy —— w12 Ly v Pyl )

Insat /2 Inez

lan2ls
g

ln—l

hip

N

Pl —lne2)

match points

P ~1) 8(U~lap)

. !

> >

[P Ry

I1 i

Fig. 5. Patching details for TM formulation.

1 Ol -l _,<L_,4
P =Ly = —ln
-0 otherwise
2D

In the above equations, z! and I!_, are unit tangential
vectors on the ith and (i — m)th subsection supporting the
electric and magnetic currents respectively. The former is
the axially directed unit vector and the latter is the trans-
versely directed unit vector.

The weighting functions are chosen to be delta func-
tions which can be represented as

Wi =00 — ly_1/2) ALz,

k=1,2,--+,n 22)

1 I = lk—l/2

o= bi-uy = {O otherwise

I + I _
A =b — Ly b= ‘k—z‘k_l (23)
Wi =61 — L1 ALZ

k=n+1, n+2,---,n+m
(24)
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Fig. 6. Patching details for TE formulation.

I
2(L-1liap)
1

T 2ap-h)

1 I=kn ks — B < Sli
8 — 1 = ~AL =2 > I 8 — I
( k+ 1/2) {0 otherwise Sk dweg o - ( k+ 1/2)
' (ko )
Lot +1 P — L )HP(NKG — B*R) dl' —
A=ty =i s = FHE 25) RECEN ) 4oy
n+m liv1
As before, 7 is the axially directed unit vector on the kth ; §+1 I; S 6 — b1 Pil = 1)
subsection supporting the kth weighting function. 5 5 at2m
Expanding the currents in (6) and testing (6) with the ] H(()Z)( m R dl' + Al k04"' B 3 1 I
i=n+m+

weighting functions ([3]) reduces it to the form

li—m+1 E
k2 . S .5 - . [
( B ) Z I S 6(1 _ lk-]/z)P[(l, _ l,'_l) liom <R n —m> 5(1 lk+1/2)P1—m(l lt—m)
doweg  i=1 Lo
g2y no - HP(KE - B*Ry dl' = 0
- HP(Nk§ — B*R) dlI' — Al (4we ) 2 I k=n+1,---,n+m
. 0 i=n+1
(kz B) n+m Sl,+|
L A~ > I 8 — 1 YP (I — 1)
. Sz 8(l = L_ 1) P (' — HP Nk B%R) dl' dwey  i=m+1 i s
i \/.__——5—2 n+2m
\/__7 n+2m li-m+1 R (2)( kz BZR) dl’ B Alk i= n§m+l II
VR sy <_.ﬁ,,_m>
4j i=n+m+1 bem R

S‘ll m+
li—m

- ol — lk—l/z)Pi—m(l' =L

- HP(Wk§ — B*R)dl' =0k

1’2,...

<Te _
R "
- HP(Wki — B°Rydl' = 0

k=n+1,

—m> 5(1 - lk+l/2)Pi—m(l, - li—m)

,n+ m. (26)
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At a certain frequency w and a fixed value of the prop-
agation constant 8 (26) is a matrix equation of the form
(18) where [Z] is a (n + 2m) X (n + 2m) matrix and {I]
isa(n + 2m) X 1 vector with elements L, L, 1,

syt o o L 0. In(26), 7 _,, is the unit outward
normal to the (i — m)th segment suppomng the magnetic
current M; _,,, H? is the first order Hankel function of
the second kind, R is the vector from the source to the
field point and R is the distance between the source and
field points. In (26), all primed variables represent the
source and all unprimed variables represent the field.

VIII. TE FORMULATION

Let a TE, mode propagate in the waveguide shown in
Fig. 1. This mode is characterised by the absence of the
electric field along the axial direction of the waveguide.
The transverse electric field produced by equivalent sur-
face currents on the waveguide contour is given by (7).

The relation between the propagation constant 8 and
the free space wavenumber k, can be obtained by solving
the electric field integral equation obtained by substituting
(7) into (15).

In the above equations, the electric currents J, J, are
transversely directed and the magnetic current M, is axi-
ally directed.

The expansion functions have been chosen to be pulses:

=P —1L_pl] i=1,2,--+,n
@7
1 OSl'—l,‘__ISli—li_l
Pl(l’ —lz—l)—_— .
0 otherwise
-7i =Pl - lz)it‘, (28)
i=n+1, n+2, - ,n+m
1 Ol —L=<l, — 1
Pl -1 = .
0 otherwise
Mi—m = Pi—m(l’ - li—m)zil—m
i=n+m+1, ,h+ 2m
(29)
1 O<!l' — I _, =<1l _n,+
Pi—m(l’ - lz—m) = - lt—m

0 otherwise

In the above equations, I! and Z/_,, are unit tangential
vectors on the ith and (i — m)th subsection supporting the
electric and magnetic currents respectively. The former is
the transversely directed unit vector and the latter is the
axially directed unit vector.

Using the expansion functions defined above, the di-
vergence of the electric current which represents the

charge is expanded as

Vi-J. = >; LT(I) (30)
- n+m
Vi-Ji= 2 LT 3D
where
[ 1
201 — Li—wy) b= s b
1
—_ Loy=1l =1._
20— — L) S
) = —1 '
i —_ L <[l'=<]|
2(1} - lz—l/2) w172 '
___.—1___ I <l <]
2(l‘i+1/2 = 1) T S
L i=12",n (32)
[ —il ! l l
—_— <] <
2(11' - lt—l/Z) = '
S S L=<l =
2(li+1/2 - li) T =i
) = -1
! — I sl =]
2041 — li+1/2) e/ !
-1
Loy=1l =1
20112 — L+ 1) e 12
K i=n+1, c,n+m (33)

An approximation has been made while choosing the
expansion functions for the divergence of the electric cur-
rent in the above equations [3].

A set of delta functions have been used as the weighting
functions.

Wk =o( — lk—x/z) Alkik

k=1,2,-++,n (34)
1 l= lk—l/2
6 — L =
( k=1/2) {0 otherwise
L + L _
Alk = lk - lk_ll lk..l/g = % (35)
Wi =80 = L) ALl
k=n+1, n+2,:--,n+m
(36)
1 L=l
ol — 1 =
( k172 {0 otherwise
l + 1
Al = by — I Lvi/2 = ﬂz‘“—k 37
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As before, 1, is the transversely directed unit vector on
the kth subsection supporting the kth weighting function.
Fig. 6 shows the representation of the expansion and
weighting functions for a dielectric loaded waveguide
supporting a TE, mode.
Using the expansion functions, weighting functions and
method of moments ([5]), (7) can be written in the form

o — = R
2 W = GO - Ao + WE - Vbl
_W:'QIXFZ():O k=1,2,"',l’l

W — — =
(kzj ()B)[(k%) = BHWS - Ap + W{ - Vi¢pl

—_Wf'ﬁle'z(,:O
k=n+1,n+2,---,n+m

Jou 2 NIE . A WE . O

k1 — WA, + Wi - V
&= B)[(x BIW, - Ay k 19u]

—"Wzg'?[XFﬁ:O

k=n+1,n+2,:---,n+m (38)

where

Al ’
Wi - Ap = 4k§11 Sl_lﬁ(l—lk_m)

P — L), THHPWkG — B’ Ry dl'

Alk n+m Sl,Jrl

P = 1), - THHP NG — B*R) dl'

k=1,2,""",n 39)

b

- Al <
e Ap = 4_;21] I; S o - lk+1/2)

h—1

=

P — o) - THHP K = B7R) dl

Al n+m it
+ == 2 IS 8 = lev1/2)
4j 1=n+1 i

P = Iy, - THHPNEG — BR) dll

k=n+1,+*,n-+m (40)
o _ Al n+m v

P = D - THHPKT — BR) dl'

k=n+1,-",n+m 41)

s

h+1/2
——ZIX &I =1

4 i=1
— 81 — L)Y HYPKS — B*R) dl'

L-11/2

1 n+m b1y

+ — ZIS & — 1)
4]1 n+1 L-1/2

— 8 — L- N HP kg — B2R) dIf
k=1,2,--",n (42)

1 & Lh+12
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In (42), (43), (44), a finite difference operator has been
used to represent the gradient operator V,. The unit vector
7, is the unit outward normal on the kth subsection sup-
porting the kth weighting function. As in the earlier sec-
tions, the primed variables represent the source, the un-
primed variables represent the field and H{? is the first
order Hankel function of the second kind.

At a certain frequency w and fixed propagation constant
B, (38) becomes a matrix equation of the form (18).

IX. B-w RELATION

The propagation constant curve represents the variation
of the propagation constant § with frequency w or with
the free space wavelength A,.

As explained earlier, at any fixed w and 3, the wave-
guide in Fig. 1 supporting a TM, or TE, mode can be
reduced to the matrix equation

[Z]11] = [0]. 48)

Assuming the above equation does represent a mode prop-
agating in the waveguide, a non-trivial solution has to ex-
ist for the equivalent surface currents since the fields are
not zero inside the waveguide. Since the vector [I] rep-
resents the current coeflicients, a non-trivial solution has
to exist for the vector [/] due to which the matrix [Z] has
to be singular. Hence

det [Z] = 0. 49

Equation (49) is the same as the condition derived for
a hollow conducting waveguide supporting a mode in [1].
Equations (48) and (49) can therefore be represented in
the simpler form

[Z11] = Nl{ ] (50)

where A, is the minimum absolute eigenvalue of the ma-
trix [Z] and [/] is the associated eigenvector. Based on
(50), a mode exists for a certain w and 8 if the minimum
eigenvalue A, is zero which represents the singular con-
dition (49).

A scanning procedure has been used here to obtain the
B-w curve. Consider the waveguide shown in Fig. 1. This
guide is made up of a perfect conductor completely cov-
ering a dielectric with material propeérties (i, €;). Since
the perfect conductor completely covers the dielectric, 8
is a purely real quantity. Also if the wavenumber in free
space is represented by kj and if the material is non-mag-
netic (p; = po) then B takes on values between

0<B=<ky k =B8= ek (51)

where ¢; = ¢g¢,,. Based on this range, 8 can be fixed at
some value and the wavenumber k; or wavelength A,
scanned over the range given in equation (51) to obtain
the propagation curve. The wavelength A, (for a fixed 3)
at which the absolute value of the minimum eigenvalue
Amin 18 minimum gives the relation between Aq and (.
Based on relation (51), it may be much easier to nor-
malize 8 with respect to kg and fix this quantity. The range

taken for this normalized @ is
0<B=<1; 1=8=+e

where 8 = (/ky. The freespace wavelength A, can now
be scanned to find the value of Ay at which absolute A\,
is minimum. This technique however led to large errors
in some cases. Hence it is worthwhile to note that fixing
B instead of 8 produced much better results.

The matrix [Z] used in the matrix equation is an unsym-
metric, complex matrix. Hence the eigenvalues of this
matrix are complex and so are the corresponding eigen-
Vectors.

The eigenvector corresponding to any point on the
propagation constant curve represents the equivalent cur-
rents existing on the surface of the waveguide. Since the
currents represent the discontinuity in the tangential elec-
tric and magnetic fields, the eigenvector represents the
tangential electric and magnetic fields on the surface of
the waveguide. These tangential electric and magnetic
fields on the waveguide surface represent the exact fields
on the guide supporting the mode. The fields inside the
waveguide can be found by following a reverse procedure
whereby the vector [I] can be used in the electric field
integral equations to solve for the fields everywhere.

(52)

X. REsuLTS
A. Partially Filled Circular Guide

Fig. 7 shows a partially filled circular waveguide which
is made up of an outer conductor and an inner dielectric
shell, existing in free space. This guide can support a TM,
mode.

Since the conductor completely covers the dielectric
shell, a wave propagating in this guide does not radiate
any fields into the space outside the guide. An analytical
solution exists for the relation between the propagation
constant 8 and the free space wavenumber k, which is the
solution to a characteristic equation [4].

A total of 50 subsections were used to model the wave-
guide shown in Fig. 7 of which 20 were used to model
the conductor, 20 to model the outer surface of the di-
electric shell and 10 to model the inner surface. This pro-
duced a total of 80 unknowns of which 20 represented the
electric surface currents J,, 30 represented the dielectric
surface currents J, and 30 represented the magnetic sur-
face currents M,. The surface integral formulation was
used to obtain the 8 — kg relation for the waveguide sup-
porting a TM, mode. Fig. 8 shows this relation for the
first TM, mode for two relative dielectric constants €, =
2.54 and ¢, = 10.2. The star represents the exact solution
which agrees well with the computed data.

The eigenvector at cut-off is shown in Fig. 9 which rep-
resents the tangential electric and magnetic fields on the
surfaces of the conductor and dielectric shell. The x-axis
represents the unknown and the y-axis is the correspond-
ing current coefficient. Both the real and imaginary parts
of the current coefficient have been plotted in Fig. 9. The
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Fig. 9. Eigenvector distribution of partially filled circular guide.

manner in which the 80 unknowns have been split into
conductor and dielectric currents are given below.

1-20 = J, on the surface of the conductor

21-40 = J, on the surface of the dielectric shell

41-50
51-70

J, on the inner surface of the dielectric shell

M, on the outer surface of the dielectric shell

71-80 = M, on the inner surface of the dielectric shell.

Based on the analytical solution, there can be no circum-
ferential (¢) variation of the electric and magnetic fields
for a TM, mode propagating in the filled circular guide of
Fig. 7. Since the equivalent surface currents represent the
tangential electric and magnetic currents, they do not show
any ¢ variation as can be seen from the constant eigen-
vector over any surface in Fig. 9. Moreover, since the
tangential electric field is zero on the surface of the con-
ductor, the magnetic currents representing numbers 51—
70 are all zero (see Fig. 9). Since the outer surface of the
dielectric shell touches the conductor, the currents J., J,
should be equal and opposite as can be verified from Fig.
9.

B. Centered Dielectric Slab Waveguide

Fig. 10 shows a waveguide made up of an outer con-
ductor and an inner centered dielectric slab. This wave-
guide supports a TE, mode. An analytical solution exists
for the B-w relation which is given by the solution to a
transcendental equation [4]. The dominant mode propa-
gating in this waveguide is a TE, mode.

The surface integral formulation was used to obtain the
propagation constant curve for the guide shown in Fig.
10. A total of 102 unknowns were used to obtain the 3-w
relation of which 58 represented the conductor electric
surface current J., 22 represented the dielectric electric
surface current J, and 22 represented the diclectric mag-
netic surface current M. The 8-w relation obtained for the
first two TE, modes propagating in the waveguide have
been plotted in Fig. 11. The star represents the values
obtained from the analytical solution.

The distribution of the eigenvector at cutoff is shown
in Fig. 12. As in the previous section, the x-axis repre-
sents the number of the unknown and the y-axis represents
the corresponding current coefficient /. Both the real and
imaginary part of the current coefficient have been shown
in the figure. From the analytical solution, the electric and
magnetic fields show no variation along the x-direction
and show a sinusoidal variation along the y-direction.
Since the surface currents represent the tangential electric
and magnetic fields, they should show the same variation.
From Fig. 12, there is no variation of the current J. in
regions A — B, E — F, J, varies in a sinusoidal manner
inregionsB— C—-D—-E,F—-G—-H—-AandJ,, M,
show no variation in regions H — C, G — D. The mag-
netic current M, is zero in regions C — D, G — H since
the tangential electric field is zero on a perfect conductor.
Hence the surface currents show the same distribution as
the tangential fields obtained from an exact solution.

C. Insulated Finline

Fig. 13 shows an insulated finline. The dominant mode
propagating in an insulated finline is a hybrid mode. Since
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hybrid modes are characterised by’ the existence of the
axial components of the magnetic and electric fields, they

can be represented as a superposition of the TM, and TE,

modes. However at cutoff (8 = 0), the TM, and TE,

(10, €0)

\)

dielectric

Y

condugctor

S conducting fins

thickness = 0.01

ab=2

Fig. 13. Insulated finline.
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TABLE I

INSULATED FINLINE: DOMINANT MODE NORMALIZED CUT-OFF FREQUENCY

s/a=1/16)

Num. , d/b b/N, b/,

1 0.125 0.1298 0.1372"
2 0.25 0.1565 0.1630"
3 0.5 0.1945 0.1989'°
4 0.75 0.2174 0.2229'
) TABLE 1I
INSULATED FINLINE; DOMINANT MODE NORMALIZED CUT-OFF FREQUENCY
(s/a =1/8)

Num "d/b b/\. b/\.
1 0.125 0.125 0.1285'
2 0.25 0.1477 0.1512"
3 0.5 0.1808 0.1853'¢
4 0.2090"

0.75 0.2045

- equations decouple and hence the cutoff frequencies of the

insulated finline can be obtained from either the TM,
equations or TE, equations. '

Tables I and 1T give the normalized cut-off wavelengths
of the dominant mode, for various dimensions of the in-
sulated finline. These results agree very well with the val-
ues obtained using the transverse resonance method [10].
The slight discrepancy in the two results is because in-
sulated fins of finite thickness were used in this paper and
zero thickness fins were used in [10]. -

XI. DiscussioN AND CONCLUSION

A detailed analysis on the use of the surface integral
method to treat dielectric loaded waveguides supporting
TM, and TE, modes has been explained in this paper. The
points on the propagation constant curve were obtained
by solving an integro-differential equation. The surface
integral method did not produce any spurious modes for
the region 0 < 8 < ko. However, this wasn’t true for the
region kg < 8 < kos/e—, since this method did produce
spurious modes in some cases. These spurious modes,
however, could easily be identified as being spurious by
looking at the eigenvector corresponding to the minimum

eigenvalue. A mode can be identified as being spurious

using the following two criteria.
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The magnetic current vanishes on the surface of a per-
fect conductor. Since the eigenvector corresponding to the
minimum eigenvalue represents the currents on the wave-
guide, the eigenvector should contain zero magnetic cur-
rents at all points where a dielectric touches a conductor.
The eigenvector corresponding to some spurious modes,
however, produced finite magnetic currents at points
where a conductor was in contact with a dielectric. This
was the reason why the number of unknowns was not re-
duced by assuming that zero magnetic currents existed at
points where a dielectric was in contact with a conductor.
Hence a mode whose eigenvector contains non-vanishing
magnetic currents at points where a dielectric touches a
conductor can be deemed as being a spurious mode.

There were some spurious modes whose eigenvector did
have zero magnetic currents at points where a dielectric
touched a conductor. As mentioned earlier, the surface
integral method did not produce any spurious modes in
the region 0 < B < k;. The eigenvector in this region
represents the variation of the tangential electric and mag-
netic fields on the surface of the waveguide. Since the
distribution of the tangential electric and magnetic fields
has to remain the same irrespective of the region, for any
mode, the eigenvector distribution in the fegion k, <
< kox/e—, has to be the same as the eigenvector in the re-
gion 0 < B < k,. This criterion was used to eradicate the
rest of the spurious modes (if any).

The surface integral method is a very powerful and use-
ful technique for treating waveguides with complex ge-
ometries.
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